If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+4.5t=0
a = 4.9; b = 4.5; c = 0;
Δ = b2-4ac
Δ = 4.52-4·4.9·0
Δ = 20.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.5)-\sqrt{20.25}}{2*4.9}=\frac{-4.5-\sqrt{20.25}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.5)+\sqrt{20.25}}{2*4.9}=\frac{-4.5+\sqrt{20.25}}{9.8} $
| 7x+8x-5=3(5x+9) | | 0.6(x+7)=10 | | -9=2.8x | | 7m=2+8m | | 3x-10=14x+4 | | 7(2x+5)=49 | | 3g=56;g=12 | | 5x+33=2x+153 | | 2-6x+12=8 | | 4x-28=0.03x+0.06+2.11 | | 8s+9=7s=6 | | 0=y^2+6y-40 | | -v+1=-9v+9 | | 3n-14=52 | | 14m=34-m | | x(3+3)=15 | | x÷2-14=66 | | 61=2x+9 | | 5x/15+8=3x/5+10 | | 4(2-1)-1v=2(v-9) | | 9y=y9 | | x÷2-14=667 | | 3y+57=85 | | -5-v÷3=1 | | -0.5j+3=4, | | -5+2f=f-7 | | x/3+8=x/5+10 | | 3x+57=85 | | -94x+45=78 | | -u+4=4-u | | 2(5-x)+x=2x+1 | | 4/3b+25=5b-18 |